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Computational, Authenticated Key Distribution

Software Encryption…

• …secures communication using modest computational resources.

• …is deployed on a vast number of devices.

Follow the talk at:
github.com/rosenpass/slides/ blob/main/ 2024-09-20-eacn/slides.pdf
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Computational, Authenticated Key Distribution

Software Encryption…

• …is superior to QKD in most respects.

• …can benefit from the inclusion of QKD.

Follow the talk at:
github.com/rosenpass/slides/ blob/main/ 2024-09-20-eacn/slides.pdf
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Rosenpass

I am the main author of Rosenpass.

• A post-quantum secure key exchange
• A real-world application used to secure WireGuard against

quantum attacks
• An organization for doing translation research in

cryptography

rosenpass.eu
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About cryptology
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To build real-world cryptography solutions
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Proofs of security are fundamental: Reduction proofs

Proof by reduction to a well-known mathematical problem assumed to be hard or
existing cryptographic construction assumed to be secure.

If an attack against my cryptosystem exists,
then this other cryptosystem can be attacked or this math problem can be solved.

Proof ad-absurdum:

• Assume an attacker against the new cryptosystem exists

• Construct a solution to the underlying math problem using the assumed
attacker
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Proofs are fundamental: Using information theory

Showing that each plain text is plausible for each ciphertext.
Cryptosystem should be formulated as a function:

𝐹 ∶ 𝐾 × 𝐷 → 𝐶

𝐾 Key material; secret information held by the trusted parties

𝐷 Protected information

𝐶 Leaked information; any information known to the attacker after
protocol execution

Now it needs to be shown, that for every value of the leaked information, every
value of the protected information is equally plausible.

∀𝑐 ∶ 𝐶, 𝑑1 ∶ 𝐷, 𝑑2 ∶ 𝐷; |{𝑘 ∈ 𝐾|𝐹(𝑘, 𝑑1) = 𝑐}| = |{𝑘 ∈ 𝐾|𝐹(𝑘, 𝑑2) = 𝑐}|
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Practical security is essential

It is not enough to build a system that is secure in theory but vulnerable on real
hardware. Some dangers include:

• Timing side-channels

• Power side-channels

• Hardware bugs in the CPU (Rowhammer, Spectre, or Meltdown)

• Lack of usability (Implementations that are easy to misuse)
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Implementations and specifications must be open
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Open-Source & Open-Science are mandatory

Keeping details about a
security system secret creates
mistrust and risks obscuring
obvious security flaws
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Open-Source & Open-Science are mandatory

Cryptography is about
creating trust; so peer review
and open processes are a
crucial part of the process.
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To integrate QKD in cryptology

• Integrate with community of cryptography researchers

• Use open-source/open-science approach

• Define security properties in cryptographic terms to be comparable

• Use QKD within cryptographic systems
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Secure Channels
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Secure Channel Protocols

Secure channel protocols like
TLS, OpenSSH, or the Noise
Protocol Framework [NOISE] are
used everywhere on the
internet. They are

• Cheap

• Fast

• Secure

• Well analyzed

• Authenticated

• Usually not secure against
quantum attacks
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Security against quantum attacks

InitHello

InitConf Biscuit

RespHello Biscuit

EmptyData

responder
authentication

initiator
authentication,
forward secrecy

acknowledges
InitConf

OSK handed
to WireGuard

Initiator State
Responder StateInitiator Responder

handshake
live phase

• Migration to post-quantum
security is possible

• Rosenpass (pictured) is an
example

• Some deployed systems are
already doing partial migration
(e.g. OpenSSH, Signal
Messenger)
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Secure channels: Security
Properties
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Passive attacker are eavesdropping
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Active attackers are intercepting

16



Computational, Authenticated Key Distribution

Secrecy

The data being transmitted must never be leaked.
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Authenticity

Sender and receiver must be certain about each others identity.
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Identity hiding

The data being transmitted must not leak sender and recipient
identities (although the metadata may).
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Deniability

The receiver must be unable to prove (mathematically) what data
the sender had transmitted to allow for informal communication.
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Non-Repudiation

Sometimes it is appropriate instead to ensure that the recipient can
prove what the sender had sent them.
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Forward secrecy

An attacker must not be able to decrypt past communication by
breaking into the server:

An extra asymmetric keypair is generated on the fly and immediately
shredded after the key exchange.
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Forward secrecy

Which is no help against active attackers – interception – though.
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Forward secrecy

Nor against future attacks against the cryptographic schemes
themselves.
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Everlasting secrecy (QKD)

It would be great to be able to defend even against future attacks
against cryptography.
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Everlasting secrecy (QKD)

Though even QKD can not help against interception, which is why
we will always need cryptography.
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QKD is impractical and insufficient

Security property QKD Software
encryption

Post-Quantum ✓ ✓

Forward-secrecy ✓ ✓

Everlasting-Secrecy Impractical ✗

End-2-End Impractical ✓

Active Attackers ✗ ✓

Authenticity ✗ ✓

Deniability ✗ ✓

Non-repudiation ✗ ✓

Identity hiding ✗ ✓

QKD is…
• Expensive
• Inefficient
• Everlasting secrecy would be

nice, but is impractical for
real-world setups

• Multi-hop security is impractical
• End-2-end security is missing

entirely (no QKD on my end-user
device fiesable for now)
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Redefining QKD Success
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Three Pillars of passive Security

• As a measure of redundancy
against future flaws in asymmetric
cryptography.

• As a method of improving
hardware security.

If you would build a wall around
your fiber, you might as well use
QKD which could be cheaper.
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Hybrid setups using QKD and end to end connections
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Three Pillars of passive Security

• As a measure of redundancy
against future flaws in asymmetric
cryptography.

• As a method of improving
hardware security.

If you would build a wall around
your fiber, you might as well use
QKD which could be cheaper.
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Appendix — Here Be Dragons
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Proofs are fundamental: Implementation security

Functional Correctness
Using formal methods from
computer science that a
cryptographic implementation is
functionally equivalent to its
specification.

Efficiency

Using complexity theoretic analysis
to ensure that the implementation
can not be slowed down by an
attacker.

Implementation security

Ensuring cryptographic
implementation fulfill various extra
security properties. For example:
• Timing side-channel resistance

certain assembly operations are
forbidden

• Memory-safety
advanced programming languages
such as Rust to avoid bugs such as
buffer-overflows
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More than encryption

Key-exchanges are a subfield in cryptography, not the whole thing!

Censorship circumvention to ensure all people can use encryption

Multi-Party Computation Arbitrary computation on encrypted data without
cheating by consortium

Homomorphic Encryption Arbitrary computation on asymmetrically encrypted
data

Robust Combiners Redundancy in cryptographic systems

Private Information Retrieval Databases without leakage about user activity
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Graphics attribution
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33

https://unsplash.com/photos/brown-rabbit-Efj0HGPdPKs
https://unsplash.com/photos/barista-in-apron-with-hands-in-the-pockets-standing-near-the-roaster-machine-Y5qjv6Dj4w4
https://unsplash.com/photos/a-small-rabbit-is-sitting-in-the-grass-1_YMm4pVeSg
https://unsplash.com/photos/yellow-blue-and-black-coated-wires-iOLHAIaxpDA
https://foto.wuestenigel.com/gray-hamster-eating-sunflower-seed/
https://unsplash.com/photos/gray-rabbit-XG06d9Hd2YA
https://unsplash.com/photos/big-ben-london-MdJq0zFUwrw
https://unsplash.com/photos/white-rabbit-on-green-grass-u_kMWN-BWyU
https://unsplash.com/photos/3-brown-bread-on-white-and-black-textile-WJDsVFwPjRk
https://unsplash.com/photos/a-pretzel-on-a-bun-with-a-blue-ribbon-ymr0s7z6Ykk
https://unsplash.com/photos/white-and-brown-rabbit-on-white-ceramic-bowl-rcfp7YEnJrA

	Section: Prelude
	Section Intro
	About cryptology
	Redefining QKD Success

